
The Picolo project

Adi Kancherla

November 26, 2017

version 1 (private release)

Whitepaper for the project can be found at [1]

Abstract

This is a work in progress. Methods and equations presented here
will most likely change as the platform evolves. Current thinking towards
methods for training AI algorithms that make price predictions for cryptos
and take bets from users are discussed. Note that work presented here is
not original research but merely an innovative way of using existing work
of various authors. Appropriate attributions are made through out the
paper and a full list of references can be found at the end. AI algorithms
used here work on two distinct types of data: unstructured in the form
of text and structured in the form of exchange data and bets on the
platform. While the research on sentiment analysis on unstructured data
is vast and several off the shelf solutions are available, we explore an
approach based on LSTM networks. For structured data, a novel approach
is proposed where the state of the platform (all current bets, buzzing
topics, randomly timestamped snapshots of past platform state) is reduced
to a “game state” and presented as a Markov Decision Process. Incentive
decay functions that govern the payouts made to users for contributing
on the platform are discussed.

1 Introduction

Blockchain technology is taking the world by storm and is increasingly capturing
people’s attention. The total market cap of all the cryptocurrencies and tokens
was about $4 billion at the beginning of 2017 and has grown close to $300
billion as of November 2017. It is hard to recall such a rate of growth for any
industry in history. Much like a startup company that found viral success,
the crypto space has much to deal with the unexpected growth in order to
take on traditional asset classes and challenge the status quo. While there are
excellent infrastructural projects in the works like plasma [2] for solving scaling
issues and filecoin [3] for solving storage issues, there are few projects that take
on the problems experienced by the drivers of this boom: investors. In the
accompanying whitepaper [1] we discussed the problem in greater detail and
the solution we are building. This paper details some of the initial thoughts
on the implementation and underlying math for the features presented in the
whitepaper. The incentive payout system is partly inspired by concepts from

1

Mechanism design theory [4] while AI algorithms draw upon research in the
fields of reinforcement learning techniques [5] and artificial neural networks [6].

2 AI algorithms

Some factors that affect prices of cryptos are listed below. These factors are
by no means exhaustive but provide a framework within which mechanisms to
analyze them can be discussed. See the sub sections where some techniques are
presented. Factors affecting the prices of crypto assets:

• Is this a base crypto like bitcoin or ethereum? Base cryptos are used to
buy other cryptos. This increases demand for it until the seller of the
other crypto decides to sell the base crypto.

• Hype cycle. Current news or sentiment for a crypto. New developments
like signing a partnership or launching a new product that increases its
utility.

• Profit taking. When an asset gains a lot of value from its previous “base”,
profit taking can take place.

• Loss cutting.

• Regulatory concerns. Cryptos are a new development and there is reg-
ulatory uncertainty surrounding them. Developments in this regard can
hugely affect prices.

• Increased awareness. As more and more people start paying attention to
the space, more money flows in which can affect volatility.

• Technological advancement. While blockchain technology has a huge po-
tential to transform various industries, there remain concerns regarding
scalability, privacy, security, ease of use etc. Progress in addressing these
concerns will have a lasting impact on asset prices.

Following methods can be used to effectively analyze the impact of above factors
on crypto prices.

2.1 Analyzing unstructured data

Unstructured data consists of the following types of content:

• Posts, comments, questions etc.

• Memes, gifs, videos etc.

• Content from third parties in the form of tweets etc.

While there is considerable amount of research in multimodal sentiment anal-
ysis a.k.a extracting sentiments from videos and GIFs, those methods are not
explored in the current iteration of this paper. See [7] and [8] for examples.
Here a method to perform sentiment analysis on textual data using an LSTM
(Long Short Term Memory) is described. LSTM is a type of a recurrent neural

2

net, that can learn dependencies in an arbitrarily long sequence of events. RNNs
(Recurrent neural network - Fig. 1 [9]) retain a state that can represent informa-
tion from an arbitrarily long context window. Further, they can simultaneously
model sequential and time dependencies on multiple scales. This success is at-
tributed to their ability to learn hierarchical representations. But RNNs suffer
from vanishing and exploding gradients problem (see [10]) making them hard to
train. To solve this, an LSTM uses a memory cell (Fig. 2). A memory cell has
a node with a self-referencing edge of fixed weight one, preventing the gradient
from exploding or vanishing across time steps. See Fig. 3 for an RNN with two
memory cells.

Figure 1: A recurrent neural network

2.1.1 Methodology

Price predictions from sentiments is done in three distinct steps:

• Individual sentiment analysis on a unit of data (a single post, comment
etc.)

• Combining the vector output from the above step with additional data
(e.g price at the time of sentiment inference) and adding it to a sequence

• Analyzing the sequence when it reaches a desired length, by feeding it to
an LSTM that outputs predictions

Length of the sequence can be varied to get predictions for different time scales.
For e.g, a shorter sequence can be used to predict prices in the short term where
as a longer sequence can be used to predict prices in the long term.

2.1.2 Unit data analysis

There exists a large body of research on sentiment analysis of tweets and other
social media data. See [11] and [12] for two of the most cited works. Most

3

Figure 2: LSTM memory cell

Figure 3: A recurrent neural network with two memory cells expanded across
two time steps

of the research including these two works use SVM (Support Vector Machine)
classifiers to train and run a model. Pre trained models are readily available for

4

common tasks like inferring sentiment from movie reviews which can be reused
with a few modifications. However, we propose using a simple cloud API in this
paper. One such API is Google’s natural language API. It takes in a piece of text
and outputs the sentiment expressed as a score and magnitude. Score represents
the overall sentiment and magnitude measures how strong the sentiment is.
Score ranges from -1.0 (negative) to 1.0 (positive) where as magnitude ranges
from 0.0 to∞. Higher the magnitude, higher the strength of the sentiment. For
example, a score of 0.5 and a magnitude of 6.2 indicates a strong mildly positive
sentiment. Output from this task is represented as a two dimensional vector of
the form [s, m] and is added to a sequence.

2.1.3 Sequence analysis

Once we have a desired length sequence, an LSTM is employed to perform
analysis and output predictions. A simplified view of an LSTM cell is shown in
Fig. 4 [13]. It has the following components:

Figure 4: Simplified view of an LSTM memory cell

• Input node i. Takes input vector xt of the form [s, m] from the current
time step and output of the hidden layer ht−1 from the previous time step

• Input gate g. Similar to input node, takes xt and ht−1. Its value multiplies
the value of the input node i

• State s. State of the memory cell

• Forget gate f . Controls how much of a previous state has to be remem-
bered and used in the current calculation

• Output gate o. Outputs the final value of computation in the current time
step

5

These equations fully determine the computation [9]:

gt = φ(W gxxt +W ghht−1 + bg)

it = σ(W ixxt +W ihht−1 + bi)

ft = σ(W fxxt +W fhht−1 + bf)

ot = σ(W oxxt +W ohht−1 + bo)

st = gt � it + st−1 � ft
ht = φ(st)� ot

where

W s are weight matrices between components

b s are biases

φ is the tanh function ex−e−x

ex+e−x

σ is the sigmoid function 1
1+e−x and

� is point multiplication

Activations from the memory cell layer are fed to the output layer of the RNN
which produces final predictions. The output layer employs a softmax function
that calculates the probabilities of a set number of price ranges. If ai are the
activations, then softmax S(ai) is given by

S(ai) =
eai∑i
i=1 e

ai

2.1.4 Training

The LSTM can be trained using various sequence lengths α to predict prices
after various time scales γ and β [14] (see Fig. 5). For example, to train the
LSTM to predict prices 2 days into the future, we might consider a sequence
length of 10000 where the latest sentiment vector in the sequence is generated a
day prior to the prediction date . So we have α = 10000, β = 48 and γ = 24 (time
is measured in hours). A large number of such sequences and corresponding
prices are taken from the past and are used for training.

2.2 Analyzing structured data

Structured data consists of:

• Price feed from exchanges

• Quantified signal from sentiment analysis

• Order book from exchanges

• Current bets

• Snapshots from the past that serve as histories

6

Figure 5: Training for predictions on different time scales

An AI agent has access to all this information and its objective is to predict the
future state of the system. The agent must be able to learn which of its actions
are desirable based on rewards that can take place arbitrarily far in the future
[15]. Here, reward can simply be the accuracy of its predictions. The agent is
trained to maximize the reward. Problems with delayed reinforcement are well
modeled as Markov decision processes (MDPs) [16]. An MDP is characterized
by a set of states, a set of actions, a state transition function and a reward
function. A value function is defined by

V (s) = max
a

(
R(s, a) + γ

∑
s′∈S

T (s, a, s′)V (s′)
)
,∀s ∈ S

where

S is the set of states

A is the set of actions

R is the reward function R : S ×A→ <

T is the state transition function T : S ×A→ π(S) where π is the probability
distribution function over the set of states

γ is the discount parameter

T (s, a, s′) is the probability of state change from s to s′ when action a is taken

In the real world, state cannot be completely observed. Even the partially
observable state is so large and action space infinite that they cannot be rep-
resented efficiently by any data structure. Hence a function approximator is
constructed from training data and is used to predict future states and recom-
mend actions. An artificial neural network serves as an excellent approximator
due to its general structure and availability of various training algorithms. Thus
the architecture of the system consists of three components: First, a state rep-
resentation s = f(s) that encodes raw input s (snapshots from the past, live

7

observations from exchange data, current bets etc where f is a neural network)
into an internal (abstract, hidden) state S. Second, a model M with state
transition function T (s, a, s′), reward function R with rewards r and internal
discounts γ. Third, a value function V that outputs values v(s) representing
the future from internal state s onwards. The system is applied by unrolling the
model M multiple planning steps to produce internal rewards, discounts and
values Fig. 6 [17]. Here g is the overall output:

Figure 6: Model rollouts

gn = r1 + γ1(r2 + γ2(...(rn−1 + γn−1(rn + γnvn))...))

Initially all parameters θ of the system are set to random values or a prior
domain knowledge. Then updates are made via stochastic gradient descent by
minimizing the loss function,

Ln =
1

2
(VE(g | s)− VM (gn | s))2

where

VE is the set of values observed in a real environment and

VM is the set of values predicted by the model M

2.2.1 Monte-Carlo Tree Search

Since the state space is large, updates above cannot be efficiently implemented in
the same way as in perfect information games. In cases like these, Monte-Carlo
simulation provides an effective mechanism both for tree search and for state
updates, breaking the curse of history and allowing much greater scalability [18].
An extended UCT [19] algorithm provides a computationally efficient best-first
search that focuses its samples in the most promising regions of the search space.

8

If prior domain knowledge is available, the algorithm narrowly focuses the search
on promising states without altering asymptotic convergence. The algorithm
uses a simulator G as a generative model of the POMDP. The simulator provides
a sample of a successor state, observation and reward, given a state and action,

G(st, at) = (st+1, ot+1, rt+1)

and is used to generate sequences of states, observations and rewards. These
simulations are then used to update the value function V . The extended UCT
algorithm in [18] uses a search tree of histories instead of states (Fig. 7). A
history is a sequence of actions and observations, ht = {a1, o1, ..., at, ot} available
to the AI agent. The agent’s action-selection behavior can be described by a
policy, π(h, a), that maps a history h to a probability distribution over actions,
π(h, a) = P (at+1 = a | ht = h). The history tree contains a node T (h) =
〈N(h), V (h)〉 for each represented history h. N(h) counts the number of times
that history h has been visited. V (h) is the value of history h, estimated by
the mean return of all simulations starting with h. New nodes are initialized
to 〈Vinit(h), Ninit(h)〉 if domain knowledge is available, and to 〈0, 0〉 otherwise.
During the simulation actions are selected to maximize

V ′(ha) = V (ha) + c

√
logN(h)

N(ha)

Here c is a constant that determines the trade off between exploration and
exploitation. c = 0 corresponds to greedy exploitation. We approximate the
future state for history ht from K sample states, si ∈ St, 1 ≤ i ≤ K by,

F (s, ht) =
1

K

K∑
i=1

δssi

where δssi is the kronecker delta function. At the start of the algorithm, K
samples are taken from an initial state distribution Is(could be random). After
a real action at is executed, and a real observation ot is observed, the samples are
updated by Monte-Carlo simulation. A state s is sampled from the future state
F (s, ht), by selecting a state at random from St. This state is then passed into
the generator G, to give a successor state s′ and observation o′. If the sample
observation matches the real observation, the new state s′ is added to St+1.
This process repeats until K states have been added to F . This approximation
to the future state approaches the true future state with sufficient samples.

3 Incentive decay functions

Incentives are based on different categories of contribution. Two example cate-
gories are bringing new users to the platform and contributing original content.
The incentive amount paid out for a user is dependent on how beneficial the
user’s contribution is to the platform relative to other users’ contributions in
that category. It is calculated by equation (1)

i = (w/W) ∗ (Ic) (1)

where

9

Figure 7: History tree search

i is the incentive amount paid to the user

w is the user’s contribution

W is the sum of all contributions on the platform

Ic is the current incentive constant for category c

For example, in user growth category, W could be the total number of new users
who joined the platform during time period t and w could be the number of
new users brought to the platform by a user in the same time period. Incentive
constant for a category can be calculated based on heuristics or a time/value
based function. A possible heuristic for the user growth category is that the
incentive constant halves for every 50,000 new users and can be calculated by
the exponential decay function (2)

pk+1 = (1/2) ∗ pk (2)

or reformulated as a log linear function (3)

log(pk+1) = log(pk)− 1 (3)

where

pk+1 is the incentive amount at time k + 1

pk is the incentive amount at time k

and the number of users at time k+ 1 is 50,000 more than the users at time k

See Fig. 8 for a visualization of how the incentives decrease over time.

4 Conclusion

Initial implementations of AI algorithms that analyze structured and unstruc-
tured data are discussed. Unstructured data is analyzed in two steps: first, at a

10

Figure 8: Incentive decay

unit level and second as a sequence by feeding it to an LSTM. Structured data
consisting of live feed from exchanges, current and past bets on the platform
amongst others is represented as a game state where an independent decision
making agent learns to take actions that maximize its game score. A method of
determining payouts to platform users is discussed where they are determined
by the magnitude as well as the category of contribution.

References

[1] Adi Kancherla. Picolo: peer to peer and peer to AI betting for crypto
tokens and currencies. https://picolo.ai/Whitepaper.pdf.

[2] Joseph Poon and Vitalik Buterin. Plasma: Scalable autonomous smart
contracts. https://plasma.io/plasma.pdf.

[3] Protocol Labs. Filecoin: A Decentralized Storage Network. https://

filecoin.io/filecoin.pdf.

[4] The Royal Swedish Academy of Sciences. Mechanism design the-
ory. https://www.nobelprize.org/nobel_prizes/economic-sciences/
laureates/2007/advanced-economicsciences2007.pdf.

[5] Yuxi Li. Deep reinforcement learning: an overview. https://arxiv.org/

pdf/1701.07274.pdf.

[6] Christos Stergiou and Dimitrios Siganos. Neural networks. https://www.
doc.ic.ac.uk/~nd/surprise_96/journal/vol4/cs11/report.html.

[7] Cai Zheng, Cao Donglin, and Ji Rongrong. Video (gif) sentiment analysis
using large scale auto generated mid-level ontology. https://arxiv.org/

pdf/1506.00765.pdf.

11

https://picolo.ai/Whitepaper.pdf
https://plasma.io/plasma.pdf
https://filecoin.io/filecoin.pdf
https://filecoin.io/filecoin.pdf
https://www.nobelprize.org/nobel_prizes/economic-sciences/laureates/2007/advanced-economicsciences2007.pdf
https://www.nobelprize.org/nobel_prizes/economic-sciences/laureates/2007/advanced-economicsciences2007.pdf
https://arxiv.org/pdf/1701.07274.pdf
https://arxiv.org/pdf/1701.07274.pdf
https://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol4/cs11/report.html
https://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol4/cs11/report.html
https://arxiv.org/pdf/1506.00765.pdf
https://arxiv.org/pdf/1506.00765.pdf

[8] Soujanya Poria, Erik Cambria, and Alexander Gelbukh. Deep convolu-
tional neural network textual features and multiple kernel learning for
utterance-level multimodal sentiment analysis. http://www.aclweb.org/

anthology/D15-1303.

[9] Zachary C. Lipton and John Berkowitz. A critical review of recurrent
neural networks for sequence learning. https://arxiv.org/pdf/1506.

00019.pdf.

[10] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of
training recurrent neural networks. https://arxiv.org/pdf/1211.5063.
pdf.

[11] Saif M Mohammad, Svetlana Kiritchenko, and Xiaodan Zhu. Nrc-canada:
Building the state-of-the-art in sentiment analysis of tweets. https://

arxiv.org/pdf/1308.6242.pdf.

[12] Apoorv Agarwal, Boyi Xie, Ilia Vovsha, Owen Rambow, and Rebecca Pas-
sonneau. Sentiment analysis of twitter data. http://citeseerx.ist.psu.
edu/viewdoc/download?doi=10.1.1.348.4054&rep=rep1&type=pdf.

[13] Pierre Luc Carrier and Kyunghyun Cho. Lstm networks for sentiment
analysis. http://deeplearning.net/tutorial/lstm.html.

[14] Wei Peng, Ying Zhang, William Chan, Pang Wu, and Le T.
Nguyen. Predicting collective sentiment dynamics from time-series social
media. http://wan.poly.edu/KDD2012/forms/workshop/WISDOM2012/

camera_ready/a6-nguyen.pdf.

[15] Michael L Littman, Leslie Pack Kaelbling, and Andrew W. Moore. Re-
inforcement learning: A survey. https://www.jair.org/media/301/

live-301-1562-jair.pdf.

[16] Martijn van Otterlo and Marco Wiering. Reinforcement learning and
markov decision processes. http://www.ai.rug.nl/~mwiering/Intro_

RLBOOK.pdf.

[17] David et.al Silver. The predictron: End-to-end learning and plan-
ning. http://www0.cs.ucl.ac.uk/staff/d.silver/web/Publications_
files/predictron.pdf.

[18] David Silver and Joel Veness. Monte-carlo planning in large pomdps.
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Publications_

files/pomcp.pdf.

[19] Levente Kocsis and Csaba Szepesvari. Bandit based monte-carlo planning.
http://ggp.stanford.edu/readings/uct.pdf.

12

http://www.aclweb.org/anthology/D15-1303
http://www.aclweb.org/anthology/D15-1303
https://arxiv.org/pdf/1506.00019.pdf
https://arxiv.org/pdf/1506.00019.pdf
https://arxiv.org/pdf/1211.5063.pdf
https://arxiv.org/pdf/1211.5063.pdf
https://arxiv.org/pdf/1308.6242.pdf
https://arxiv.org/pdf/1308.6242.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.348.4054&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.348.4054&rep=rep1&type=pdf
http://deeplearning.net/tutorial/lstm.html
http://wan.poly.edu/KDD2012/forms/workshop/WISDOM2012/camera_ready/a6-nguyen.pdf
http://wan.poly.edu/KDD2012/forms/workshop/WISDOM2012/camera_ready/a6-nguyen.pdf
https://www.jair.org/media/301/live-301-1562-jair.pdf
https://www.jair.org/media/301/live-301-1562-jair.pdf
http://www.ai.rug.nl/~mwiering/Intro_RLBOOK.pdf
http://www.ai.rug.nl/~mwiering/Intro_RLBOOK.pdf
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Publications_files/predictron.pdf
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Publications_files/predictron.pdf
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Publications_files/pomcp.pdf
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Publications_files/pomcp.pdf
http://ggp.stanford.edu/readings/uct.pdf

	1 Introduction
	2 AI algorithms
	2.1 Analyzing unstructured data
	2.1.1 Methodology
	2.1.2 Unit data analysis
	2.1.3 Sequence analysis
	2.1.4 Training

	2.2 Analyzing structured data
	2.2.1 Monte-Carlo Tree Search

	3 Incentive decay functions
	4 Conclusion

